
NASA-CR-[94ZO1

Knowledge Systems Laboratory

Report No. KSL 93-60

_w

August 1993

Software Synthesis using Generic
Architectures

by

Sanjay Bhansali

(NASA-CR-194201) SOFTWARE

SYNTHESIS USING GENERIC

ARCHITECTURES (Stanford Univ.)

43 p

N94-13355

Uncl as

G3/61 0182778

•KNOWLEDGE SYSTEMS LABORATORY
Department of Computer Science

Stanford University
Stanford, California 94305

\

Software Synthesis using Generic Architectures

San jay Bhansali

Knowledge Systems Laboratory

Department of Computer Science, Stanford University

701 Welch Road, Building C

Palo Alto, CA 94304

Abstract

We describe a framework .for synthesizing sot%rare systems based on abstracting software

system designs and the design process. The result of such an abstraction process is a generic

architecture and the process knowledge for customizin G the architecture. The customization

process knowledge is used to assist a designer in customizing the architecture as opposed to

completely automating the design of systems. We illustrate out" approach using on implemented

e.vample of a generic tracking architecture which we have customized in two d_fferent domains.

We describe how the designs produced using KASE compare to the original designs of the two

systems, describe current work and plans for extending KASE to other opplication areas.

1 Introduction

Synthesizing software systems by reusing previously developed components has long been a

subject of considerable interest in software engineering. One of the most effective principles that

has emerged for reusing software is; clbstraction. Abstraction consists of extracting the inherent,

e_,sential aspects of an artifact, while hiding its irrelevant or incidental properties. One of the

ways in which abstraction fosters reuse is by providing a class of artifacts that can be instantiated

or cHstomized to produce several different artifact instances meeting different requirements.

Procedural and data abstraction, information hiding, and parameterized programming are

ex,tmples of some of the most notable application of the abstraction principle in software

s\.rstetlqS.

The abstraction principle hats also been used as the basis for automating the construction of

artifacts that would normally require a creative process. For example, Emycin _,van Melle, 1980),

an expert system shell was developed by abstracting the control structure of Mycin: abstracting

,rot the process _t building b]ackboard systems yielded AGE {Nil & Aiello, 1979).

Commercially' available expert systems shells and application generators are based on different

nlixtures of design and process abstractions. Nlore recently, abstraction hits been successfully

used in algorithm s\nthesis, e.e., the KIDS s\,stem iSmith, 1990) contains abstractions of several

different classes t_f algorithms in the form of algorithm theories which can be (semi-)

ORIGINAL PAGE iS

OF POOR QUALITY

"x

• i J

automatically instantiated to synthesize specialized algorithms for several different problem

instances.

In the KASE (Knowledge Assisted Software Engineering) project (Bhansali & Nii, 1992a;

Guindon, 1992) we ,'u'e investigating the utility of abstracting so/hvare system designs and the

design process. Designing softwea'e systems is a creative and ill-understood process. Successful

software designs are created by a small group of designers; however, the process is rarely

documented and the final design is typically not well documented. Consequently, it is difficult to

understand and maintain the system, which in turn leads to poor reuse. Our approach to this

problem consists of (1) identifying useful cIasses of software systems and the problems they

solve, (2) abstracting the design of the system as a generic architecture for that class of

problems, {3) formulating rules and constraints for customizing the architecture based on specific

problem descriptions, and (4) providing a computational environment that enables designers to

construct specific systems semi-automatically by customizing the generic architecture. Such an

approach allows us to reuse the architecture for multiple applications within the class, capture the

process of software design which could be used to maintain the system (Bhansali, 1992) or be

reused for multiple designs, and ultimately, learn algorithmic descriptions of the design process

(Garg & Bhansali, 1992).

A guiding theme in our research is to provide a set of software tools that support the way

humans design. Thus, our goal is not to create a fully, automated software synthesis system, but

rather to provide it mixed-initiative system in which the design task is divided between a human

designer and the system. Typically, KASE provides design alternatives and default suggestions

for architectural parameters, explanations for its suggestions, dependency maintenance between

diffeFent design decisions, and consistency checking. The human designer determines the order

in which the various design actions are initiated and makes the final choice for each design

decision, which may or may not be based on the suggestions offered by KASE.

Our approach may be characterized its a semi-formal approach. It is not completely formal

where the semantics of a problem specification and architectttral descriptions are contained

entivelv within a set of mathematical equations. Nor is it completely informal where the name of

:t symbol carries all the information for a human its in, e.g., systems like IBIS (Conklin &

Begeman, 1989) and hypertext. Our approach relies instead on keywords and commonly

accepted domain-specific ontology which ave not formally defined. However, there are explicitly

represented constraints and rules that provide some semantics to the symbols. We were motivated

in adopting this approach because we wanted to create a pF, tctical system that could be used by

software designers who 'ave not well-versed in forreal, mathematical notation; at the same time

we wanted a machine to be able to Feason with the representation, dlaW useful inferences, and

provide inte]ligent assistance to designers in customizing generic architectures.

ORIGINAL PAGF- IS

-_ OF pOOR QUALITY

%

We have used KASE to design systems in three different application ,'u'eas (Bhansali, 1993;

Bhansali & Nii, 1992b). In this paper we describe our approach and experience in synthesizing

software designs in one such application. The application is that of tracking a set of moving

objects (e.g. aircraft) based on an analysis of signals emitted by them. We have designed two

different systems in this application area. The two systems had been originally designed several

years ago by two different teams of designers. What we have shown in KASE is a rational

reconstruction of the design of these two systems by reusing a single generic architecture and the

same design rules. In section 7 we compare the designs that were produced by KASE with the

original designs of the two systems. The comparison shows that the designs that were produced

by KASE were more systematic, more comprehensible, and less likely to have errors due to

omission. On the other hand they were not as efficient as the original designs and required some

amount of application-specific optimization.

1.1 Framework for A rchitecture-based Software Design

Figure 1 shows an overview of the KASE system. The ,_hadowed boxes represent knowledge

components that are part of KASE. Figure 2 gives an overview of the process of synthesizing

systems using KASE.

User

Problem
class

Solulion 3_fcattnrcs

Library of i

generic
archilecltlrcs

(& modules)

Cuslomizalion

knowledge

KASE pro\ idcd

SIX:cific
archilecture

Gcllcric

architecture

Conslrainl

Chcckcr

\

\
Problcm Class

Schcma
[[islilncc

User

User crCillC(l _ Process

Problem Class

Modcl

Figure I. O\ervicw o1 software design in KASE

• ? f

Select

Generic

Architectt,re Specify
Problem
Instance

TT J
Customize _"_l Check
Generic constraints
Architecture

I r" .," /.//.'"/ .-" , ..
/.././

/ [,/ ..i. ¢i" _ e I j, ee ¢.-

Figurc 2. Process model for synthesizing software systems using KASE. Tile

shaded box denotes process not described in this paper.

A designer initiates the design process by first selecting a generic architecture from a librmy

based on the problem class for his particuku" problem and the desired solution features lSection

2). Associated with the generic architecture is a specification for the problem class called a

problem-class schema as well as a problem-class model. An individual problem is specified by

instantiating the problem class schema; the problem-class model contains the vocabulary of terms

that help in the instantiation (Section 3). Also associated with the generic architecture is

customization knowledge which contains knowledge for customizing the generic architecture and

is the basis of KASE's intelligent support (Section 4). Finally, KASE has a constraint checker

that is used to check for the consistency of the design with respect to certain architecture-specific

constraints (Section 5).

Figure 3 illustrates the general relationship between generic architectures, problem-class

models, and customization knowledge. It can be seen that a generic architecture may be used to

solve different problems belonging to different problem classes: likewise a problem may be

solved using different generic architectures. For example, Generic Architecture 1 may be used to

solve all instances of Problem Class 1 as well as all instances of Problem Class 2, and instances

(_f Problem Class 2 may be solved using either Generic Architecture 1 or Generic Architecture 2.

The customization knowledge is the crucial link between a generic architecture and a problem

class; it contains rules that determine how the parameters of a generic architecture must be

instantiated in order to solve problem instances.

In our ctm'ent work we have shown how a single generic architecture can be customized to

solve two different problems that are instances of a problem class bv reusing :t common

customization knowledge, lnvestiggtting how a single generic architecture can be used to solve

problems belonging to different problem classes, ,md how a single problem instance can be

solved on different generic architectures are topics that we have left for future work.

4
O_;t%q*t.L Oa_g !S

OF POOH QUAL_,'_'

' T

Generic
Architecture 1

Generic
Architecture 2

Problem Class 1

Problem Class 2

Problem 1.a

*_ Problem 1.b

Problem 2.a

Problem 2.b

Fi_.ure 3. Relationship between Generic Architectures, Problem classes, and
Customization knowledge.

Subsequent sections describe each of the processes in Figure 2 - selection of an architecture,

problem specification, customization, and consistency checking - in detail. At this point it might

be useful to look at an example fiom a familiar domain to help ground the concepts and

terminology in KASE. The example is for illustration purposes only and has not been

implemented in KASE.

1.2 Example: Compiler synthesis

Suppose we were to use KASE to help software designers in designing compilers. The

problem class can be described as follows: Given the syntactic and semantic specification of a

_ource language and a target language, design a system that takes as input a string, and,

provided the string is syntactically valid in the source language, produces an (semantically)

equivalent string in the target language.

The problem class schema consists of a set of roles representing the parameters of the problem

and constraints on the valttes of the roles. For this example the problem schema would have as

roles the source language syntax constrained to be a context-free grammar and the source

language semantics constrained to be specified in, say, an ¢_perational form. The problem-class

model would have terms like grammar, context-fiee grarnmars, regular grammars, productions,

start symbol, terminals, non-terminals, and other auxili_u'y concepts that a user needs to know in

order t¢) specify problems as an instance of a problem class (i.e. fill the problem-schema roles

with values). A single, problem instance would then consist of ;t pa,'ticula," grammar (a set of

productions, tt start symbol, the set _)f terminals, and the set of non-terminals), a specific

instruction set for at target language, the meaning of each syntactically valid string that can be

generated fi'c_na the start symbol, and s_ t_n.

A L,eneric architectttre fOl" this pr¢_blem class might be as _hown in Figure 4 (adapted fr_m

_Aho & Ullnaan. 1977)). The _lrchitecture is an _wganization _f genetic modules that implement

• T

the main phases of a compilation process. The solution features associated with this generic

,architecture might be, e.g., that this is a single-pass compiler, or that it requires time and space

that is O(n) where n is the length of the input string. The customization process would consist of

determining the detailed algorithms and data structures for implementing each of the generic

modules. The customization knowledge would consist of rules that specify how properties of an

individual problem specification suggest/constrain the implementation choices for the generic

modules. An example of such a rule would be: If no production right side in the source grammar

is E or has two adjacent non-terminals, then an operator-precedence algorithm may be used as

the parsing algorithm in the parser module. Finally, the constraint-checker would have certain

consu'aints that need to be satisfied by the design of any compiler. For example, if an LR parsing

I ymbol Table [Manager

s_ Lexical Parser " Code I Code
Analyzer Generator I _ Generator

Fiourc 4. A generic compiler architecture.

algorithm is being used then the action elltJ T of the LR parsing table should be unique (i.e. there

are no conflicts).

The above is a pedagogical example given in order to elucidate the main concepts in KASE in

terms of a well-known and familiar example. For the vest of the paper we will use the tracking

application domain to illustrate in detail the design process in KASE. Specifically, we will

consider the following problem:

Ship and Submarine Tracking Problem: There is a region of ocean in which ships and

submarines are moving. As they move they emit noise which can be detected by sonar sensors.

Often the received signal is distorted by background noise and other objects in the environment.

The problem is to design a system to :_nalvze the properties of all the signals received by sensors

6

locatedat collectionsites,determinethe identity, location,heading,andothercharacteristicsof

theshipsandsubmarines,andreportthemperiodically(seeFigure5).

>,
Collection

silo

Figure 5. Tracking ships and submarines. The lines rcpresent tracks and the
circles represent positions of ships and submarines at different times.

2. Architecture Selection

The process of designing a system in KASE begins by a designer selecting an appropriate

generic architecture from the library. The library of architectures is indexed to help in the

_election process. The indexing scheme is based on two main hypothesis. Broadly speaking, the

hypotheses state that generic architectures me a cross product of problem-classes and the high-

level design decisions for solving the corresponding problem instances.

2.1 Problem Class Hypothesis

The first hypothesis is that architectures are designed to solve a class of l)rohlems that share

certain features. For example there natty be an architecture that is designed to analyze signals in

a batch: this architecture would be different from another architecture that performs analysis of

continuous signals; these two architectures would be radically different fi-om, say, a real-time

interactive system that is governed by strict timing constraints and user interactions. According to

the problem class hypothesis, we can use problem classes as one component of an index to

generic architectures. In EASE, when a generic architecture is created, an annotation is attached

to the architecture that describes the class of problems which can be ,_olved using the

'architecture. Subsequently, during architecture selection, KASE presents a list of all architectures

andtheir annotatedproblemclassdescriptions.From thisdescriptiona designercandetermineto

whichproblemclasshisor herproblembelongsandusethatto selectageneticm'chitecture.

A problemclassdescriptionis obtainedby abstractingthe commonfeaturesfrom a classof

problems.This descriptionwould dependon how generalthe architectureis. For example,a

pipelinedarchitectureis a very generalarchitectureandthe associatedproblemclasswould be

verygeneral.On theotherhand,a pipelinedea'chitecmrefor a compileris quite specificwith the

numberof componentsandthe interfacesof eachcomponentclearly defined;consequently,the

associatedproblemclass- compilingalanguageof acertaintype- is quitespecific.

As a concreteexamplein KASE, there is a genericarchitecturefor a problemclasscalled

tracking which is described as: Track moving objects based on signals received.fi'om the objects

and infer properties of the moving objects. (Section 3.1 shows how this problem class is

represented in KASE.) Thus, in addition to the Ship and Submarine tracking problem, this

architecture could be used, say, to track aircraft based on their radar emissions, or any other

moving objects that emit a detectable signal.

We currently do not address the issue of how specific problem classes can be identified and

associated with generic architectures. There has been tome related work (Shaw, 1991) in

identifying common architectural idioms and how features of a given problem make a particular

architectural choice appropriate or inappropriate. However, this is an open problem requiring

further research.

2.2 Soh,tion Features

.-\ problem class by itself is not sufficient to determine an appropriate architecture for a

problem because there may be several, quite different designs for Ltparticular problem depending

upon how various design issues and trade-offs involved in decomposing and solving a problem

are resolved. Our second hypothesis governing the selection of architectures is that an

,rrchitecture embodies a set of high level strategic decisions on how to decompose and solve a

l)robtem.

In general, these strategic decisions depend on the problem class. For example, for the tracking

problem one of these strategic decisions would be whether to use concunencv or not. For some

_thev problem class a strategic decision might be whether the system functionality should be

decomposed into a set of horizontal layers or whether to use weakly coupled vertical partitions.

For vet another problem class the degree of accuracy required in the solution may be the

oveniding factor in selecting an architecture. The way a strategic decision is resolved depends on

the requirements of :t problem. The collection of strategic decisions associated with :t generic

architecture is called the soltttion.f'eattH'es - they characterize the solution to a problem.

8

The sizeof the solution featuressetdependson the degreeof absn'actionof anarchitecture.

Fora completelyinstantiatedaa'chitecturethis sizewould bemaximalandcorrespondto thesetof

all design decisions made in going from the requirements of a problem to the final design. For a

generic architecture, the solution features would be some subset of the solution features of the

fully instantiated architecture. The solution features are represented as attributes associated with a

generic ,'u'chitecture. For example, the solution features associated with one generic architecture

for tracking are as shown in Figure 6.

Signal-processing-stratcgy[symbolic,statisticall: symbolic
Processing-platformluni-processor, multi-processorl : uni-processor
Processing-mode[incrememal, batch] : incremental
Processing-knowledgelalgorilhmic, t_euristic] : heuristic

Figure 6. Soh,tio,_ features associated with a generic tracking architeclure. The terms in italics represent choices
for the features and lhe tern1 on the right of lhe colon represents the feature Ihat is embedded in one partict, lar

,eeneric architectt, re.

The solution features and the various alternatives choices for them are not defined formally

and are not used by KASE to do any automated inferences. They simply serve as keywords for

indexing the generic architecture library. However, once the various solution features have been

identified, they may be used as a basis for designing other generic architectures by taking

different combinations of the solution features, for example a generic architecture for tracking

that uses a multiprocessor and processes input signals in a batch.

For each generic architecture that is selected for a problem class, KASE presents to the user

the solution features embedded in the architecture and based on the requirements of a problem

the user select.,; one of the architectures.

3 Problem Specification

Having identified generic architectures with problem classes, we can create and store generic

descriptions for the problem classes along with the architectures. In addition, we can create a

model for the problem-class which contains the vocabulary of concepts relevant for describing

problems belonging to the problem class. Individual problem instances are then specified by

instanti,tting the generic problem-class description using the problem-class model.

3.1 Problem Class Description

We represent a class of problems as a problem schemo. A problem schema consists of a set of

roles, which represent the parameters of a problem, and constraints on the values of the roles.

Instantiating these roles with specific values produces a problem specification instance. Figure 7

,_hows the problem schema for the tracking problem class.

9

objects-to-be-tracked:trackable-objects =

relations-to-be-tracked: trackable-relations =

attributes-to-be-tracked: attributes =

trackcd-object-behavior: state-diagrams =

tracked-relation-behavior: state-diagrams =

lrackmg-opcrations: operations =

inpul-signal: signal =

signal-collcclors: collection-sites =

Figure 7. Tracking Problem Class schema.

The terms to the right of the colon denote type restrictions on the problem parameters. In

general, there may be other constraints in addition to the type constraints on the values of the

parameters. For example, in the tracking problem class there m'e constraints that check that the

user specifies at least one operation that takes as input a signal record and computes atu'ibutes of

an object that is an instance of objects-to-be-tracked. (It is possible to implement this constraint

because operations are specified declaratively in terms of inputs, outputs, preconditions, and

postconditions). Other examples of constraints implemented for this problem class are given

later. To specify individual problem instances, a user has to provide values for each of the roles

in the problem class schema such that the corresponding role constraints are satisfied.

3.2 Problem Class Model

The types that appear in the problem class schema are part of the problem-class model. In

general, a problem class model contains the basic concepts or vocabula_T necessmy for modeling

a class of problems. This includes classes of objects, common attributes of the objects, generic

relations between them, and the specifications of generic operations. For capturing the dynamic

behavior of the objects, the model might contain the minimal set of states for vmious objects,

transitions between these states, and events triggering these transitions. Note that it is not critical

for the problem-class model to be complete (e.g., contain all relevant classes of objects needed to

model a particular application) since our objective is not to provide complete automation tk)r the

software design. However, the assistance that KASE can provide to a designer is based on its

customization knowledge tSection 4t which in turn depends on how complete the problem class

model is. Therefore, a relatively complete problem-class model enhances the usefulness of

KASE.

In KASE, problem-class models are created using an object-oriented modeling methodology

(Rumbaugh.Blaha, Premerlani,Eddy, & Lorensen, 1991). The model description begins by first

I()
ORgT_p_,_,L gaGE' _£

OF P'C,,Oa QUA__{:_:

defining the types used in the problem class schema. Objects, relations, attributes, operations,

states, events, transitions, and a set of primitive data types (that m'e provided by KEE 1, the

underlying object-oriented environment) constitute the set of basic available types. All other

types are defined as subtypes of this basic set. In object-oriented modeling a model consists of

three parts: a static model, a dynamic or behavior model, and a.functional model. The static

model consists of the objects, relations, attributes, and operations on the objects and relations.

The behavior model shows the temporal relationships between objects and relations in terms of

states, events, and transitions between the different states. This is shown using a state diagram.

Finally, the functional model specifies the meaning of operations specified in the object model.

The operations are typically specified in terms of the inputs, outputs, preconditions, and

postconditions, and/or an equation relating the output to the input.

Figure 8 shows fragments of the static, behavior, and functional model for the tracking

problem class. For each object and relation in the static model, common attributes, constraints on

the type of attxibutes, and common operations are also specified. The behavior model is shown as

a state-diagram in KASE. KASE contains a graphical user interface that allows users to create

and edit such diagrams graphically (Bhansali, 1993).

/ trackable-object

object _" collecting site
"" _ -

sional

line-of-bearing
relation -------tracka ble-relation

member-relations

(a) Static model

(b) Behavior model." state transition diagramJor

objects-to-t2e-tracked. The lal2els on arcs

represent events.

(DEF-OPERATION c onlpule-sl)ecd- Ii'onl-2-1msitio ns

:inl)ut ((?1)1 position) (Tt 1 lime) (71)2 position) t'712 time))

:OUll)ltl (('Is real))

:body assign[Ts, vcclor-nonn[vcclor-sul3tracll?p2 '.'pl 11/('712 - ':! 1)1
)

(a) Functional model: delinition 0[6111 operation to compute aa

uttril2ute o[a trackal)le-ol)ject.

Figure 8. Fragments of lhc slatic, behavior, and f,,it'Jcliollal model for the tracking I>roblcm class.

! KEE is ',l rcgislcred tradcma,-k ln-oduct ol +hltcllicorp Inc.

II OF POOR QUALi_iT

t

3.3 Problem Instance Specification

The problem class schema and the problem-class model are used to drive the acquisition of

specifications for individual problem instances. Before a problem instance is specified, a user

extends the problem-class model by introducing problem-specific terms. For example, the user

may create new classes of objects and relations as specializations of the objects and relations in

the problem-class model. A problem class model helps in this process in three ways:

1) It provides an organizational structure for the problem-specific knowledge and

communicates to a user the kinds of knowledge needed and how to represent them. For example,

consider Figure 9 which shows the extension of the tracking problem-class model for two

different problem instances. It can be seen that many different kinds of objects like an emitter (an

object that emits radar signals), it cluster (a set of aircraft sharing certain properties), a line (which

represents a signal of a particular fiequency), and a harmonic (a set of related lines) are all

classified as a subclass of trackable-object. This is because the existence of each of these entities

can be inferred flom the information available in a signal. Without the organizational framework

provided by the problem-class model, these objects might have been classified differently by

different users. As we will see later, the organization of the problem-specific knowledge is

important in determining the support that KASE can provide to a user during customization.

Note, that we ,'u'e making a crucial assumption here: the meaning of the wtrious concepts that

constitute the problem-class model are shared by the problem-class modeler and the problem

specifier. The use of mnemonic names, textual annotation, and explicitly represented constraints

facilitate the sharing to some extent. However. general techniques for communicating such

ontological commitments is a research topic beyond the scope of our current work (Gruber,

1991).

2) The problem-class model also provides default types and values for certain attributes and

default definitions for certain operations. For example, the co-ordinate system for representing

the position of objects, and the definition of tin operation that computes the average speed of an

object given its position at two different times, can be inherited directly from the problem-class

model. This reduces the amount of effort expended in specifying new problem instances.

3) Finally, certain constraints can be built-in to validate a problem specification for

consistency. For example, for the u'acking problem there is a constraint to ensure that for at least

one tracked object, the user defines at least one operation that takes as input a signal and creates

an instance of the tracked object. {Note, that in general it is not necessary that each trackable

object instance be inferred directly flom the signal - some of them may be infmTed indirectly

through the existence of other objects). Similarly, there are constraints that check that the states

used in defining operations have been defined in the state transition diagram, the attributes

referenced in the operation definitions have been defined in the static model, and so on.

12

1 1

f

emitter

trackable-object < aircraft
cluster

. line-of-bearing

trackable-relation (member-relations_.-emitter-in-aircraft

x aircraft-in-cluster

signal _ radar

k,,,. j

f . line "N

/ harmomc

trackable-object _-- source

_ latlorm
fleet

.line-of-bearing

trackable-relation (/ harmonic-lines

--member-

relations _ source-harmonics

sonar \\ , platform-harmonics
sie,,al _ \\

_ intelligence- k\ platform-sources

report \ platform-in-fleet

Problem 1 t'roblem 2

Figtnc 9. Inslanlialion of i)roblem-class tcmls for Iwo different problem inslances.

Figure 9 showed the extension of the tracking problem-class model for two different problems

- tracking aircraft based on processed radar signals (Brown,Schoen, & Delagi, 1986) and

tracking ships based on processed sonar data and intelligence reports. The attributes of a typical

domain object and the operations associated with the object are shown in Figure I0.

Attributes

Operation_

Cluster

id

position
heading
activity
speed
threat-potential
state

create-cluster

split-cluster
merge-cluster
delete-cluster

compute-position

Problem I

Source

type
oosition
confidence
creation-lime

suspension-time
state

create-source

suspend-source
dissolve-source

refine-source-type

compute-position
compute-confidence

Problem 2

Figure 10. Altribulcs and opelalions of 1,,vo typical ol)jccls m lWO diffcrcn! tracking prolflems.

1.3

An operation is specified in terms of the inputs, outputs, precondition, postcondition, and

(optionally) an expression in a high-level language. The generic state transition diagrams

associated with trackable-object is intended to provide a starting point to a user in specifying the

operations. Typically, the user would copy the generic state transition diagram associated with

an object and then modify it using the graphical tools provided by KASE. Once the state

transition diagram is customized, the designer would fill in the definitions of each operation.

Figure 11 shows the customization of a state-transition diagram for the source object and the

definition of an operation on it.

O veri fied_

timeout(N)/
,,.3 \

(a) lnstantiation of a generic state transition diagram for an object called source (see Figures 8 & 9)

(DEF-OPERATION dissolve-source

:conmmnl "If a source is suspended for more lhan N time-units
then remove it from ftuaher consideration."

:input ((% source) (?t time))
:p_ndition (AND (= (state ?s).SUSPENDED)

(> (- ?t (SUSl)ension-time ?s)) N))
:body ()
:postcondition (= (state ?s) DISSOLVED)

(b) Definition of the dissoh'e-source operation appearing in the above diagram.
suspension-time andstatc are attributes of source (see Figure 10).

Fiettre 1I. Si)ecifying a problem instance: behavioral and ft,nclional aspects

4 Customizing a Generic Architecture

Just as a problem class is an abstraction of a set of problem instances, a generic architecture is

an abstraction of the solutions for a set of problems. It is obtained by abstracting the common

features from the solutions of a set of problems. Figure 12 shows a generic architecture for the

tracking problem. This architecture is based on the blackboard rnodel and its solution features are

shown in Figure 6. These features of the architecture satisfy certain problem requirements, e.g.,

computational cost - an architecture based on conventional statistica] processing instead of

symbolic manipulation of the data could be computationally too expensive.

(Nii.Feigenbaum.Anton, & Rockmore, 1982) gives a more detailed description of the rationale

for using a blackboard-based architecture for these kinds of problems.

14 OF POOR QUALITY

m-TrackingArchitecture

m-Signal
Feeder

m-Report
Generator

m- S it uat ion Board

m-BlackboardPanel

[m-Levell I

[m-Level 2 I

m-ControlPanel

m-TrackingComponent

m-TrackingAgent 1

m-TrackingAgent 2

m-Control

Figttrc 12. A generic tracking archileclurc

The m'chitecture consists of five major submodules (a module is defined shortly). The m-Signal-

Feeder and m-Report-Generator modules represent the system's interface to the external world and

contain routines to read the signals provided by collection sites and routines to generate periodic

reports respectively, m-SituationBoard is used to represent the state of the various tracked objects

and relations as well as certain control information, m-TrackingComponent contains submodules

called m-trackingAgents that compute the values of the data represented in m-SituationBoarc!, m-

Control contains routines that monitor the activity on the m-SituationBoard and decides what action

to take next. (This is a simplified description of a blackboard-based architecture. For more details

see (Jagannathan,Dodhiawala, & Baum, 1989; Nil, 1989)).

4.1 Generic Architecture

We define a module as a packaging of procedures and/or data in a logical unit. In KASE, a

module is represented as an object with a set of attributes. Figure 13 shows the minimal set of

attributes for each module. Attributes that are preceded by an :.":are derived attributes whose

values are computed from the primitive attributes (e.g., the input to a module is simply the set of

variables that form arguments to procedures provided by the module and the results of

procedures required bv the module). For each attribute, there is a type and cardinality constraint

on the values that can be used to instantiate it. This is indicated by the keywords :valueclass and

:cardinalio,, respectively. The cardinality is specified as a range (rain - ma.v) with ? indicating

that there is no restriction on the maximum cardinalitv. Thus, for example, the submodule slot of

;t module can be either nil or be instantiated to a set of any number of modules, whereas the

supermodule slot can be at most a single module.

15

OF POC_ "-'"_" '_

MODULE
submodules modules contained within this module

:value.class module

:cardinality (0-?)
provides procedures provided by this module

:valueclass procedure
:cardinality (1 -?)

requires procedures required by this module
:valueclass procedure
:cardinality (0-?)

has-locally local procedures
:valueclass procedure
:cardinality (0-?)

has-access-to modules which can provide procedures to this module
:valueclass module

:cardinality (0-?)
*supermodule module that contains this module (inverse of subn_odule)

:valueclass module

:cardinality (0-1)
*inputs data flow into the module

:valueclass any
:cardinality (0-?)

*outputs data flow out of the module
:valueclass any
:cardinality (0-?)

*calls modules called by procedures within this module
:valueclass module

:cardinality (0-?)
annotation an English dcscrit)lion of lhc functionality of this module

:valueclass string

Figure 13. Minimal inlemal represenlation of a module.

Our representation of a module is similar to the traditional notion of a module in the literature

(Prieto-Diaz & Neighbors, 1986), except that we do not have a slot to represent declarations for

data structures. Data structures are represented using the notion of data encapsulation, i.e. as an

instance of an abstract data type. Thus, instead of providing a data structure that can be accessed

or modified by external routines, a module simply provides a set of operations that can be

performed on it. F:or example, consider the module m-signal-leeder which is implemented as a tile

containing a sequence of records, where each record corresponds to a signal obtained fl'om a

collection site. Such a module is represented as:

modt, le tn-si,gnal-fccdcr
provides olden-signal-file, close-signal-file, read-next-record.
requires nil

• . .

Sit_ce there is no write operation, other procedures can only read records flom this file. Other

examples of modules in the tracking architecture are shown below.

16

modulem-Control

submodules nil

provides l)-simple-control
:valueclass ONE.OF (p-sunple-control,

p-hybrid-control)

requires get-TrackmgAgenl-triggers,
get-BB-levels,
get-BB-level-instances,
get-posted-events

has-access-to m-TrackingComponent,
m-SituationBoard

has-locally dcternlinc-executable-agents,
delermine-BB-nodes,
sched ule-otxeralions,
execute-schedule

module m-TrackingComponent

submodules
I

:valueclass m-TrackingAgcnt
:cardinality (1-?)

provides get-Trac "kingAgent-triggers,
execute-Agent

requires get-BB-level-state,
put-BB-lcvel-slate

has-access-to m-SituationBoard

A module interface is defined in terms of the procedures (or operations) that it provides to

other modules, and the procedures that it requires fiom other modules. The other attributes are

used to constrain the way :t system is structured and the way modules communicate with each

other. For example, a module may only use procedures provided bv its submodules or a module

that it has access to.

A generic module is an abstraction of a set of modules obtained by viewing some of the

attributes of a module as parameters. Although. technically each of the module attribute may be

considered as a parameter, we have found that the two most useful one are the submodules and

the provides attribute of a module. For example, in the tracking architecture the m-

TrackingComponent moclule is a generic module in which the submodules attribute is a

parameter. A specific instance ofm-TrackingComponent is obtained by instantiating this attribute

with a specific set of submodules. Similarly, the m-Control module shown above is a generic

module with the provides attribute being a parameter. There are constraints which determine how

the parameters of a generic architecture may be instantiated. One of the constraints is a type (or

valueclass) constraint. For example, for the m-TrackingComponent the submodules are

constrained to be of type m-Tracking-Agent which is another generic module, and for the m-

Control module, the provides slot is constrained to be either p-simp/e-c:mfro/or p-hyhrid-control

- which are generic procedures.

4.2 Generic Procedures

Analogous to modules, there is a notion of generic procedures in KASE. ,,\ procedure is

represented in KASE as shown in Figure I4. ,-Xgeneric procedure is obtained by treating the

17
ORIG"?.IAL F'_GE IS

OF POC'R QUAL_I"Y

inputs, outputs, or body of the procedure as a parameter. The valueclass for the body atu'ibute of

a procedure is a program-schema or a template similar to the notion of a clich6 in Programmer's

Apprentice(Waters, 1985); a specific wdue for the body is a refinement of the program-schema

such that the pre- and post-conditions of the procedure are satisfied. Currently, KASE does not

support the verification of programs, and hence the pre-conditions and post-conditions are not

being directly used for supporting code synthesis. However, section 6.5 describes how certain

design rt, les use information provided by the pre- and post-conditions to suggest parameter

values.

PROCEDURE

inputs

:valueclass (id, dalalype)

:cardinalily (0-'?)

outimt

:valucclass (id, datatype)

:cardinalily (()- 1)

l)recondition

:valueclass logic-expression

:cardinality (0-1)

I)OStcondition

:valucclass logic-expression

:cardinality (0-1)

l)ody

:valuechlss progr',lnl-schem.,l

:cardinalily (I- 1)

annotation

:valueclass string

:cardina[ily (1-1)

Fieurc 14. Represcntalion of a procedure in KASE

As an example, consider the program schema 2 associated with a generic procedure called p-

simple-control:

l)roce(h, re p-sin]plc-conlrol

,,.

body =

loop[{ parlassignlagcills, dctcnninc-execulable-aocnls[]],

assignlnodes, dclcrminc-B B-nodes[I]],

assign lschcdulc,dclcmfinc-schcdule[agcnts,nodes]

call[exccuic-schcdulc[schcd ulc] I },

Icrrriinalion-condition[I

2 The program schclllas arc wrillcil Hi a <dJlll)Ic Itingtla7c dial is (tcrivcd froill the synlax of Malhcnlalic:a. Tlicv

can hc c;isil',' toni'cried lo code in _>omc cxOCill;iblc l;Hlgtla._O. OtHrCiill_ Ihcrc cXiSlS a lrallslalor lhal COllVCrls

I)roeiaills _ riticn in lhis hin_tlagC iillo I7orlrali.

ORIGINAL P:<tOf; _£

IS OF POOP, _',_:I_-..!:,_'Y

The above procedure determines a set of tracking-agents and nodes (instances of objects and

relations represented in the SituationBoea'd), creates a schedule for executing the tracking-agents

on the relevant nodes, and then executes the schedule. The construct par[statement_, statemenb]

means that the order in which the two statements statemenG and statement,,_ are executed is

unspecified. During customization, one of the customization steps would be to determine the

order of execution of these two statements. Depending on which statement is performed first, we

get two quite different implementations of the control algorithm, fin blackboard terminology, this

is referred to as determining the.focus of attention.) Each of the operations in the program schema

(e.g., determine-executable-agents, schedule-operations) may be either a subroutine fl'om a code

libralT or may be another program schema.

The above is an example of a very specific program schema. At another extreme, we have a

very _eneral program schema like the following:

procedure Tracking-operation-schema

input (istale : BB-level-slate)

output (oslale : BB-level-stale)

precondition tree

postcondition line

body

valucclass: prod.ram-schema

This is a general class of procedures that take as input an instance of type BiB-level-state (which

represents the state of all objects and relations represented in the m-Level modt, les of m-

BlackboarclPanel)) and produces a new BIB-level-state. The only restriction is that the operation

terminates. As described shortly, KASE contains customization knowledge, in the form of rules,

that suggest to a designer the set of all useful instances of the Tracking-olgeration-schema based

on the customization of m-IBIsckboarcl-Panel.

With the _tbove definition of modules, a generic orchitecttfre can now be defined simply as the

top-level generic module in a system. Thus, a generic architecture is defined compositionally in

terms of its constituent fgeneric) submodules and procedures and the constraints on those

submodules and procedures. The process of customir.ation is then defined as the process of

instantiating the parameters of the various generic modules and processes comprising a generic

architecture.

4.3 Customization Knowledge

KASE provides active support to a user in customizing an architecture by providing a list of

customization actions that need to be performed for each generic component (module or

procedure), suggesting ways for doing the customization, and providing rationales for its

19

suggestions. The knowledge for providing this support is represented as customization knowledge

for each generic architecture. This knowledge has to be acquired fi'om experienced designers who

have designed systems within the scope of a generic architecture. Techniques that can help

designers in acquiring this knowledge are the subject of active research within the knowledge

acquisition community but a discussion of these techniques is beyond the scope of this paper.

The customization knowledge associated with a generic architecture is essentially a set of roles

or methods that can assist a user in finding appropriate values for the parameters of the generic

modules and procedures in the architecture. In KASE, the customization knowledge is packaged

as a set of customization commands which are associated with a generic component. A

customization command is represented as shown in Figure 15.

The suggestion-generator is a pointer to a method (a lisp function) or a set of rules (written in

KEE's rule language) which generates suggestions for instantiating the value of a parameter.

During customization, the suggestion-generator is invoked to obtain a list of alternatives for

instantiating a parameter value. The user may then select one of the suggested values for

instantiating the parameter.

The instantiating-method attribute points to a method used to perform the customization. The

method takes as input the selected parameter value. In most cases, it simply updates the value of

the parameter and mmks the parameter as being customized. In the case of procedure parameters,

the instantiating method may also invoke a set of transformation _-ules to refine the procedure

body.

CUSTOMIZATION COMMAND

generic-unit ."l)oittter to generic .nit with which this customization is associated

:valucclass ONE.OF (module procedure)

parameter : _ame O/'l?arameter

:v_llucclass _ : can De name o/any altril)ttte _fthe generic ttnit

suggestion-generator : see re.v/

:valueclass lisp-funclion OR rule-sol

instantiating-method : see text

:valueclass lisl)-funclion

depends-on

:valucclass _

rationale

: \'ahxcclil._S strimg

Figure 15. Rcprcscntalion o1" custon_izalion knmt ledge in KASE

," SCg It2_l

: any c.sromi2atiot_ [_arameter or attribute ofa problem-spectfic trait

" s_'e l_.vl

2(1
OF POOR QUAL!TY

The depends-on attribute contains a list of other customization parameters or objects fi'om the

problem-specification which are used in the methods for generating suggestions. In general, the

value used to instantiate a parameter depends on the values of these parameters and objects. This

information is used by KASE to restructure a chronological sequence of design steps into a

dependency graph. If at some point in the design, a designer wishes to retract a certain design

step or change the problem requirements, KASE uses the dependency graph to identify all and

only those design steps that are potentially affected by the retraction. It then retracts all the

affected design steps while retaining the effects of those design steps that are not affected by the

change.

The rationale slot is provided so that a user may add his or her own comments on why a

parameter value was instantiated to a particular value (if the user does not choose one of the

KASE-suggested values). This is cun'ently in the form of uninterpreted English text and is meant

to serve as a design documentation.

An example of a customization command is the following:

customization-command Suggest-BB-levcls

generic-trait m-BlackboardPanel

parameter submodtfles

suggestion-generator Blackboard-lcvel-rulcs

instantiating-method submodule-instantiating-method

depends-on ((im,tances objects-to-he-tracked) (inslances relations-to-bc-lrackcd) ...)

This customization command can be used to determine the set of submodules of the module m-

BtackboardPanel. Each of these subnaodules must be an instance of the generic module m-Level.

The customization method is implemented as a set of rules called Blackboard-level-rules. An

example of one such t paraphrased) rule is:

If X is a subtylx: of objects-to-be-trackedand auribulcs of X arc to be reported

then Ihcre should bc _ submoduleof m-BlackboardPanelof LVl)em-Levelthai manil)ulalcs ot_.iccls of tylx_ X.

The outcome of this customization conam;tnd does not depend on any other parameter of the

generic architecture but it depends on some problem class entities like objects-to-be-tracked and

relations-to-be-tracked. The resuh of the customization affects the customization of another

parameter of the generic :trchitecture - the ,_ubmodules of m-TrackingOomp0nent, which would

therefore have the above parameter in its (/cpen(ls-(m stot. If at some point the set of objects that

21 ORIGiNAl.. _A_.tE _S

OF POOR QUP.L_

need to be tracked changes, KASE can automatically undo the customization of these two ('and

other dependent) parameters.

Note that the customization knowledge depends on the generic architecture and the

formulation of the problem-class model for the con'esponding problem-class. However, it is

independent of a particular problem description: there m'e no problem-instance-specific terms in

the rules comprising the customization knowledge. Thus, the customization knowledge serves to

"merge" the domain model for an application problem and a generic architecture to produce an

application-specific architecture; the problem-class model provides the intermediate vocabulary

for expressing the customization method that does the merging.

5 Constraint Checking

The customization knowledge associated with a generic architecture enables KASE to provide

a systematic methodology for designing systems. Our hypothesis is that such an approach

enables a designer to create a design that is relatively free flom errors if the customization

knowledge is correct. However, there are two ways in which errors can be introduced in the

design.

First, the customization knowledge may be incon'ect. In general, it is not possible to guarantee

the correctness of the customization knowledge since some of it is heuristic in nature. This seems

to indicate the limitations of our approach and provides a criterion for estimating the utility of the

KASE approach for particular problem classes. This is discussed in greater detail in Section 9.

Alternatively, such errors may be handled by an iterative process of simulating the prototype

design, identifying the sources of errors, modifying the customization knowledge, and re-

,_ynthesizing the design. However. currently KASE does not contain tools to support this process.

A second way in which e.rrors can be introduced in the design is due to the fact that KASE is

based on a design assistant metaphor (as opposed to an automated designer). Thus it is possible

tora designer to ignore the customization knowledge and the suggestions offered by KASE and

manually customize the architecture. This may introduce errors in the design. Most design tools

contain domain-independent constraints to check for the syntactic consistency of a design (e.g.,

each module has at least one input and output, a named procedure is not provided by two

different modules). KASE contains, in addition to these, architecture-specific constraints that

check for the semantic consistency of the final design. These constraints are represented

declarativelv in the Constraint-Checker subsystem of KASE (Figure 1). Figure 16 shows how

constraints are represented in the Constraint-Checker. Details of the motiwLtions for this

representation are given elsewhere (Nakano & Bhansali, 1993a: Nakano & Bhansali, 1993b) and

here we will briefly summarize the main ideas.

22
OF POOQ QU_LJ_IY

(defconstraint

:generality <generality-type>

:strength <strength-type>

:designphase <designphase-type>

:constraint <cor_stroint>

:annotation <string>

)

Fi_nre 16. Representation of conslraiuts ill KASE

The :generality, :strength, and :designphase attributes are used to classify consu'aints from

different perspectives. The :generality attribute refers to the scope of applicability of constraints.

For example, a constraint may apply to all software systems Cthese are the ones typically

implemented in CASE tools), it may be specific to certain projects, specific to certain application

domains, and so on. In KASE some of the categories for classifying constraints according to their

generality are:

• general-architectural constraints which apply to all software designs,

• specO%-architectural constraints which apply to all designs based on a generic m'chitecture,

• general-domain consta'aints which apply to all problem specifications,

• problem-class-spec_/Pc constraints which apply to all problem instances of a problem class.

The :ztrength attribute of a constraint is meant to indicate how serious the effects of violating

that constraint are. Examples of constraint categories based on their strength are:

• en.fi)rced: These are constraints that are automatically enforced by KASE. This is

implemented using attached methods on slot attributes and the active value feature 3 in KEE.

Type constraints and certain kinds of inverse telations are typical constraints that belong to this

category.

• strong: These are constraints which, if violated, would imply a fatal flaw in the design and

would result in a run-time error if not resolved.

• _veak: These are constraints which, if violated, usually indicate some redundancy or

sloppiness in the design and may or may not be harmless, t If we use an analogy with compilation

then the strong and weak constraints correspond to the error and warning messages, respectively

thztt ztre generated by a compiler.)

The :desig_phase attribute refers to the _etevance of the constraint to a particular process or

phase of the design. Cun'ently there are only two phases that are recognized by KASE - a

modeling, phase in which problem instances are described and a design phase consisting of

3 The acti\ c values fc,lturc in KEg alloxvs one Io specify lhat a particular action always occur \vhct_evcr the \attm

,ff a \lot is accessed or modilicd.

23

Constraint

If a module Xrequires procedure P then there must be some
module Y to which X has access and which provides procedure P.

If transition T1 and "1"2exist for some state and the conditions
which cause T1 and T2 are idenlical, then the next-state for TI
and T2 should be the same.

Forat least one object that needs to be tracked, there must

be defined at least one operalion lhal creates an instance of
that object based on input signals

All procedures lhat are provided by modules must be required
by some other module.

No module must be dccomposed into more thai 7
subnmdules.

Any event that is used to lrigger a lrackingAgcnI must bc
posted by some other trackingAgenl.

Any event that is posted by a trackingAgcnt mm, t be generated
by some other trackingAgenl.

If X is a submodule of Y, lhcn Y must be a SUl_en-nodtflc of X.

Generality

general-
architectural

general-
domain

problem-

class-specific

general-
architectural

ocneral-
architectural

specific-
architectural

specific-
;irchitectural

_enel'al-
archileclural

Strength

strong

strong

strong

weak

i.,

weak

strong

we a k

cnloreed

Phase

dcsign

modeling

rnodeling

design

design

design

design

design

Table t. Exaruples of some conslraints implemented in KASE

activities that create the components of an architectural design. Table 1 gives examples of some

consnaints, and their generalky, strength, and designphase.

5.1 Constraint Language

The :constraint attribute specifies the actual constraint. Constraints are written in a language

based on first-order logic. The syntax of a constraint is as shown in Figure 17.

In addition there are the fol]owing restrictions:

• There should be no free variables in the constraint (i.e. constraints are well-formed

formulae).

• Each quantified variable must be of a type that has been defined as a unit 4 in KASE (e.g.

module, procedure). This is to ensure that the quantification of each variable is over a finite

range.

1 The basic representation scheme in KEE' is based (m I)'ames x_hich arc called milts.

24

i

constraint ::= <antecedent> => <consequent>

antecedent ::= FORALL (<var> : <vartype>)+ <mformula> [

<mformula>

consequent ::= EXISTS (<var> : <vartype>)+ <mformula> [

<mformula>

mformula ::= (AND <mformula>+)[

(OR <mformula> +)[

tNOT <mforrnula>) l

<aformula>

aformula ::= (<pred-symbol> <term>*)

lerm ::= (<fi2-symbol> <term> _)

Figure I7. Symax of conslrainls

• Each function symbol must be a pre-defined function available in Common Lisp (e.g. length)

or provided by KEE (e.g. get.value which returns the value of a slot of a unit).

• Each predicate symbol must be a pre-defined boolean function in Common Lisp (e.g.

member) or provided by KEE (e.g. unitp which checks whether its argument is a defined

unit or not).

The constraint-checker allows the use of expressions like:

(attribute-name unit-re D

as syntactic sugm" for the expression:

(,get.values unit-OT_e un#-ref attribute-name)

where attrib,te-name is the name of some slot of a unit of type trait-type and ,,it-rL_fis a variable

of type z,Tit-O.,lge or evaluates to an instance of type tmit-o,pe. {The m_it-type is inferred from the

declatation of tt,it-refif it is a variable; otherwise ,m#-tyt_e is nil.)

In spite of the above restrictions, the constraint language is quite expressive and allows us to

specify a wide variety of constraints including the ones shown in Table t. As a result, evaluating

constraints can be computationally very expensive if there are a large number of units in the

knowledge-base. Therefore we need mechanisms that can increase the efficiency of constraint

checking.

The technique that we have implemented in KASE is based on the observation that in most

cases a designer starts out with a consistent state of the design, makes changes on certain parts of

the design or problem specification, and then checks to see if he or she hats violated some

constraint. In such cases, instead of checking all the constraints known to the system, it is

necess:u,y only to check those constraints that could possibly have been affected due to the design

25

actions taken.(This is roughly analogousto the idea of incrementalcompilation versus full

compilation).

In order to be able to identify suchconstraints, the Constraint-Checker computes a set of

triggers for each constraint. The triggers attached to a constraint point to all actions that can

potentially cause a violation of the consuaint. When a designer initiates constxaint checking on

some pm't of the design, the constraint-checker uses the history of design actions performed by a

user to determine the set of constraints that need to be checked based on the trigger attached with

each constraint.

5.2 Edit Actions

Each action that a user performs during customization or while creating a problem

specification can be decomposed into it set of basic actions that manipulate the units and slots

represented in a KEE knowledge base. These basic actions are called edit actions, since they are

used to edit a problem specification or design. All the allowable edit actions are modeled as part

of the KASE environment. Associated with each edit action is a set of KEE/Lisp functions and

predicates called qffected-clauses. These are the sets of functions and predicates whose values

might be modified as a result of executing the edit action. For example, consider the following

edit-action:

cdil-aclion: (add-value ?u(vpe ?u ?s ?v)

affcclcd-clauses: (.gel.values ?utype ?u ?s)

(has.value.p ?uo,pe ?u ?s ?w)

(agM-vahte ?utype ?u ?s ?v) adds ?v to slot ?s of a unit ?u of type ?tttype. As a result of this

action the result of the function call (get.values ?uOpe ?u ?s) will change. Similarly, the value of

the predicate !has.value.p ?uO,pe ?u ?s ?w) - which checks if ?w is one of the values of slot ?s of

,t unit ?u of type ?,tt)7_e - might change - depending on what ?v is. Consequently these two are

the affected clauses of the edit action.

The edit actions are used to form triggers for the constraints.

5.3 Trigger generation

In order to explain how the constraint-checker computes triggers, we will consider a simple

constraint in the tk)llowing abstract form:

_,FORALL (.)x : TI) (P ?x) => EXISTS (?y : T2) iQ ?x ?y))

The compiler first translates the above constraint to the following equivalent functional form

which can be interpreted by the underlying Lisp/KEE environment:

i if tP ?x)

(some #"(lambda{'?y) (Q ?x ?y))

t instances T2)))

26

where (instancesT2) denotesall instancesof type T2. In general, the translation involves

droppingtheuniversalquantifiers,substitutingtheexistentialquantifierwith the some consu'uct

(availablein CommonLisp), andtranslatingthe various predicatesand functions to their "de-

sugared"versions.Note, that asa result of droppingtheuniversalquantifier, theconstraintnow
contains?x as a free vaiable.

Next, the constraint checker extracts all function calls and predicates which might be affected

by one of the edit actions in KASE. These are simply those function calls and predicates that

unify with one of the qlfected-clauses of an edit action. Let (P '?2) be a function call or predicate

in a constraint C (?_ denotes a set of variables), (P '?_) be an affected-clause of an edit action E,

and c be a substitution such that:

(P '?_) = (P '?_)o

Then Eo is a trigger for the c(mstraint C. At run-time when the constraint-checker is initiated,

it tries to match the trigger, Eo, with a step in the design history. Let E' be a design step and 0 be

a substitution, such that

fEd)0 = E'

The constraint checker will then evaluate the constraint CO. If there ,-u'e any free variables in

the constraint, the constraint needs to be evaluated for each possible instantiation of each of the

free variable. Also, note that any substitutions involving the bound variables of the constraint can

be dropped fl'om O. This follows directly fl'om the axioms of lambda calculus:

[?z/M](()v '?z. (f ?z)) N)

= [?z/M]((X ?z'. (f ?z')) N)

= (X ?z'. (f ?z')) N

= ()v '?z. (f ?z)) N

; Renaming z to z'

,"Since ?z does not occur fi'ee in N

: Renaming z' to z

The next section illustrates the constraint checking mechanism using an example.

5.4 Example: Constraint Checking

Consider the sixth constraint in Table 1 which involves the m-TrackingAgent module of our

generic Tracking architecture. This module provides three procedures: get-triggers, get-action, and

get-posted-events, get-action returns a procedure I hereby called the tracking action) which is an

instance of the tracking-Ol>erati<m schema (Section 4.1). get-triggers returns a set of events

signifying when the tracking action can be executed, get-posted-events also returns a set of events:

these are the possible events that can be posted by the tracking action.

A common kind of error that is made in defining m-TrackingAgent modules is that an event that

is used to trigger ',t tracking action is not posted by 'any procedure. Therefore we need a

constraint to safeguard against such em>rs. In order to represent such constraints, we introduce

two new parameters for the m-TrackingAgent called triggers and posted-events. The value of triggers

27

is the (constant) output of get-triggers and the value of posted-events is the (constant) output of get-

posted-events. In our notation this constraint is represented as follows:

(FORALL ((?M module) (?E event))

(AND (member ?M (submodules 'm-Trac'ldngAgent))

(member ?E (triggers ?M)))) =>

(EXIST ((?Mprime moduleD

lAND (member '?Mlmme (submodules 'm-TrackingAgent))

(not (= '?Mprmae ?M))

(member ?E (posted-events ?Mprime))))

KASE compiles the above constraint into the following equivalent expression in Lisp:

(if (and (member ?M (get.values nil 'nt-TrackingAgent 'submodulcs))

(member ?E _get.values 'module ?M 'lriggers)))

(some #'(lambda(?Mprime)

(and (member '?Mprime (get.values nil 'nvTrackingAgent 'submodules))

(not (unit-ctltml ?Mprimc '?M_)

(member ?E (gCl.x_dues 'module ?Ml_rilne 'posted-events)))

(CCS-collect-tmits 'module)

with the type declaration:

((module ?M)fcvcnt '?E_)

Unit-equal and CCS-collect-units are built-in function in the Constraint-Checker. Unit-equal

checks for the equality of two KEE units. CCS-co/lect-tmits takes a unit-type as an argument and

retmns the set of all units in KASE's knowledge-base that are of type tmit-t_7_e.

T(_ derive the trigger, the constraint checker extracts each atomic f()rmula (a function call or a

predicate) in the constraint that unifies with ,tn a.ff['cted-c/ause of an edit action. In the above

constraint there me three such formulae:

(get.values nil 'm-TrackingAgent 'submodu/es)

(get.values 'module ?M 'triggers)

(wet.values 'module ?Mprime))osted-events)

The value of these functions can change if the submodule slot of m-TrackingAgent is changed

(i.e. a new submodule is added or an existing _me deleted), or if the value c_f the trigger or posted-

events slot of a module is changed. The c_wresponding edit action for doing these is:

edit-action: (change-slotva/tte ?tmit-t_7;e ?trait-name ?slot)

affected-clauses: (get.va/ttes ?mfft-tV/;e ?trait-name ?slot)

28

Unifying the affected-terrn with each of the three formulae above and applying the substitution

to the edit-action we get the following uiggers:

(i) (change-slotvalue nil 'm-TrackingAgent'submodule)

(ii) (change-slotvalue 'module ?M 'triggers)

(iii) (change-slot-value 'module nil 'posted-events) (Note, that the substitution

[?unit-name� ?mprime] has been dropped).

The above consuaint will be checked when:

• the submodule slot of any unit called m-TrackingAgenr is changed (for each possible binding

of ?M and ?E);

• the o'igger slot of any module A is changed (with ?M bound to A);

• the posted-events slot of any module is changed (for each possible binding of ?M and ?E)

(End of example)

One of the limitations of the above approach is that it depends on how completely the various

edit actions have been modeled in terms of their effects on the function and predicate values used

in the constraint. Cun'ently we have only considered those functions and predicates that compute

or evaluate some property of a unit or slot represented in KASE's knowledge base. Based on our

experience so far, we have found that this is sufficient to detect all constraint violations of

interest without having to do an exhaustive check.

It is, of course, possible for a user to force KASE to check all constraints irrespective of the

history of edit actions taken by the user. In that case, the constraint-checker ignores the trigger

and substitution information and tries each constraint for each possible substitution of the free

variables in the constraint. Currently, there are about 30 constraints (including the architecture-

specific and problem-class-specific constraints for the tracking domain). Checking all the

constraints after the architecture has been instantiated takes a few minutes, whereas checking

constraints based on the history of edit actions takes from a few seconds to a few minutes

depending on the length of the edit action histot'y.

The constraint checker has a mdimentazy paraphraser which provides an English paraphrase of

each violated constraint. A unique feature of the constraint generator is its ability to suggest

remedial actions to remove the violated constraints. Details of the remedy generation algorithm

may be found elsewhere (Nakano & Bhansali, 1993a).

6 Customization of Architecture: An Example Session

In order to give a flavor of the design process in KASE we will describe very briefly a design

session involving a hypothetical designer who is using KASE to customize the generic tracking

architecture for the tracking problem described earlier. In order to aid readability, the design

29

sessionis dividedinto thecustomizationof the4 mainmodules:m-TrackingArchitecture, m-Control,

m-BlackboardPanel, and m-TrackingComponent. Knowledge of blackboard-model based

m'chitectures is helpful in understanding the process, but the objective is to elucidate the variety

of knowledge-based assistance being provided to the designer.

6.1 m-TrackingArchitecture

The designer begins by using one of the graphical tools to show the module decomposition

diagram for the generic architecture. KASE shows the customizable modules highlighted in the

diagram. The designer decides to begin the customization process by st,'u'ting flom the top-level

module, m-Trackingkrchitecture. To customize the module the designer moves the mouse over the

module and clicks. KASE presents a customization menu that is context-sensitive and contains a

list of all known customization options available for this module, along with an explanation of

what each command does on the bottom panel of the screen.

For m-TrackingArchitecture there is just one parameter called solution-strategy that represents the

overall solution strategy for the problem. In general, there are three main strategies for solving

problems in this architecture: event-driven (or data-driven or bottom-up), expectation-driven (or

model-driven or top-down) and hybrid (i.e., both event- and expectation-driven). KASE presents

a list of these three alternatives and asks the designer to select one. The designer decides to

initially build a purely event-driven system. KASE incorporates this choice and marks the

module as being customized.

There are two enforced constraints attached with this parameter that constrain the

customization choices for two other modules: m-SituationBoard and m-TrackingComponent.

Specifically, the constraint states that if an event-driven solution strategy is chosen then the m-

ControtPanet submodule of m-SituationBoard should be of type m-EventPanel and the m-

TrackingAgent submodules of m-TrackingComponent should be of type m-Event-based-TrackingAgent.

However, it is not necessary for a designer to consider all the ramification of this decision at this

point and she continues on.

6.2 m-Control

The designer next decides to work on the m-Control module. Thus, KASE does not prescribe a

predetermined sequence o/design actimTs, and lets the designer control the design process as

much as possible. Them-Control module contains the top-level driver routine for the architecture

called p-simple-control (Section 4). The algorithm essentially consists of a loop where in each

iteration, the algorithm picks pairs of a tracking agent from m-TrackingComponent and an object

from m-SituationBoard, and executes the operations associated with the tracking agent on the

objects. Depending on '_vhat algorithm is used to select the tracking agents and objects, and how

3O

many operationsand objectsare to be processed in each iteration, a wide variety of control

algorithms are possible.

One of the pea'ameter for the p-simple-control procedure is called the focusing-strategy. There

are two choices for this parameter: TrackingAgent-based and BlackboardLevel-based. The

designer chooses a u'acking-agent based focusing su'ategy. This triggers a transformation that

refines the program-schema forming, the body of p-simple-control:

loop[(parIassign[agents, detemm_e-executable-agems[]],

assign[nodes, delemame-B B-nodes[]]],

assignIschedule,dctermine-schedule[agents,nodes]

call[execute-schcdule[schedulell },

termination-condition[I]

loop[(assign[agents, detcm_ine-executable-agcntsi]],

assign[nodes, detemfine-B B-nodes[]]],

assign[schedule,detemmm-schedule [agents,nodes]

call[cxccute-_,chedulcischcdule l] },

tcnnination-condition[]]

Each of the subroutines in the above procedure are also generic procedures that can be flwtner

customized. The user next clicks on determine-executable-agents. One of the pm'ameters of this

procedure is the algorithm used to '+elect the list of executable tracking-agents (after having

determined which tracking-agents have their trigger conditions satisfied). One choice fox" this

algorithm, which is selected by the user, is a best-first selection algorithm. KASE does not

possess enough customization knowledge to completely synthesize a best-first algorithm. So it

simply records this decision and informs the user that she needs to provide an algorithm that

takes as input a set of awtilable tracking-agents and returns the most promising one.

,At this point, the designer decides to shift her attention to the m-TrackingComponent module

(realizing, opportunistically, that she first needs to determine the set of m-TrackingAgent

submodules in the m-TrackingComponent module before beginning to design a be.st-first selection

algorithm). Recent studies (Guindon, 1990) have provided empirical evidence that this kind of

opportunistic shift occurs frequently during design and a guiding theme in our project hats been to

provide a design environment that permits a designer the flexibility to navigate among different

components of the design (Guindon. 1992).

31 O_IC_.NAL PAGE t$

OF PO,_,_ QUALITY

! •

6.3 m-TrackingComponent

The m-TrackingComponent module contains as parameters the submodules of type m-Event-

based-TrackingAgent. Each such submodule is comprised of three procedures - get-action, get-

triggers, and get-posted-events - described earlier. The parameters for an m-Event-based-

TrackingAgent are therefore the trigger, the action, and the posted-events. The user selects a

customization command to suggest the set of tracking actions to be used in instantiating each m-

Event-based-TrackingAgent. KASE responds with the following message:

"You need to.first instantiate the Blackboard-Levels parameter of

m-BlackboardPanel module/"

KASE uses the representation of customization commands to detect dependencies between

design steps and is able to detect and warn a user if the user tries to customize a pm'ameter whose

value might later be affected by another parameter. Thus, although KASE does not prescribe a

particular design process, it warns a designer {flshe tries to initiate a design step that is likely to

be revised later when some other part of'the design is instantiated.

[_ (I] lil_ | [,lilll-I,] iih il;llil_] _

i_U'_'_zsT-_E:-Lv:'_L's' I
t _STAt.rrlATE-_;F,-LE'._Lg [

(a)

1.1"4I'4'I il'i [+tl _4, I i] -'l l_i-za ¢!1 t_i_t.t, ! I I ii III',il[,]l r;ti [q =la¢11
SELECT ALL

DEBELECTALL

DON E
.".BORT

==z=====

LINE
SOURCE

PLAT FORM
HARMONIC

H.".qMONIC-LINE-ASSOC
F'L.",TFORM- SO UP,CE-ASSOC
SOURC E-H.-F:MOt,ilC-AS SOC

LINE-LIN E3 EG-..ASSOC
L--,T.-,TIObbH/"F:MOMC-B E.AF:Ii',IG

5TATIOIq-LINE-E;E.-FilI'IG
ST.-.TION-LINESEG'8 E_F:ING

(b)

Figure 18. Cuslomizing the-n-BlackboardPanel modulo in lhc gcimlic tracking archiieclurc

6.4 m-BlackboardPanel

Guided bv KASE the designer proceeds directly to the m-BlackboardPanel module. The

parameters here are the submodules m-Level each or" which contains procedures to create and

manipulate instances of some object or relation. The customization commands available for this

module are shown in Figure IS(a). Clicking on suggest-bb-levels, the user is presented

with a list of objects and relations that should be represented in m-Levels (Figure 17(b)). The

designer can ask KASE to explain its suggestions and KASE rises anrlotated text templates

32

associated with the rules to provide explanations, for example (the following is a verbatim copy

of an explanation generated by KASE):

"LINE is an intermediale object�relation needed in order ro track

PLATFORM

SO UR CE
SO UR CE-LINE-A SSOCIA TION.

Therefore, it must De a level of m-BBPanel"

The designer can use this rationale to modify his requirements and/or refine a KASE design

heuristic. (This would involve changing the rule or method associated with the customization

command. Currently KASE does not contain any tool to help a user in doing this.)

6.5 m-TrackingComponent Revisited

Having instantiated the submodt|les of m-BlackboardPanel pmameter the designer returns to the

m-TrackingComponent module and re-tries to instantiate its st, bmodules. The tracking actions

consist of all operations required to compute and monitor the various properties of the objects

and relations to be tracked.

KASE first determines the set of all operations that can affect any of the objects or relations

represented in m-Level. It then determines the set of events for each of the operations, using a set

of heuristic rules (a paraphrase of some of the heuristics are shown in Figure 19). A designer can

ask KASE for a rationale regarding what operations ,m event triggers and why, which o]gerations

post an event and why, :rod why a particular operation was selected to be a tracking action.

Heuristic 1 .(Determining types of evenls).

It an object is represented in ,m m-level, then create cvcnls for each altribtue of the object Ihat can bc modified.

The event tel)resents the fact thai the value of the object aUribute has been updated).

Heuristic 2 (Determining preconditions)

If an operation, Opl, updales lhe vahue of a derived altribulc, A 1, and Ihc value of Ihe derived allribute

uncliot_,illy depends on the valLx¢ of some other atlribulc, A 2, then ,my cxcnI lhal signals an updalc it] the value of

A 2 lllllSl lrigger operalion Opl.

Figure 19. Ex_unplcs oL hcurislics used to delennit]c lilt2 sol OL events triggering lrackingAgents.

There are other customization commands provided by KASE that automate some of the more

frequently occurring design activities for such architectures, for example, design optimizations.

One such optimizing command is to merge events. It may be the case that whenever a particular

event occurs it is usually accompanied by another event. For example, the change in a particular

attribute, say heading, of a tracked object may usually be accompanied by changes in its velocity

1 4'

as well as a frequency shift in the signal associated with that object. Thus, it might be more

efficient to group all operations that depend on either of these three events and perform them

together.

This example illustrates another guiding theme of our approach that is well-known in

knowledge-based software engineering research (e.g., (Smith, 1990; Waters, 1985)): Divide the

design task between a human and KASE in a way that e.wloits the unique skills of each. In

general, the human is better equipped to decide when to apply an optimization technique and

what optimization techniques to use, whereas the machine is better equipped to carry out the

optimization task, propagate the effects of those changes to other parts of the program (in the

above example revising the trigger and posted-events parameter of each tracking agent),

remember the optimization task, and if necesstu'y, undo the effects of the optimization operation

litter. The use of generic architectures provides a context whereby useful and common

architecture-specific optimization tasks can be identified and mechanized.

6.6 Constraint checking

At this point the designer wishes to see if the design so far violates any consu'aints. So she

initiates the consuaint checker. (For the sake of illustration we will assume that the designer has

ignored one of the suggested values for the trigger parameter of m-TrackingAgents). The constraint

checker provides to a user two panels called the Constraints Filtering panel and the Edit Actions

Filtering panel which allow a user to limit the set of constraints checked based as well as to look

for only those constraints that get violated as a result of a specific set of edit actions (Nakano &

Bhansali, 1993a). The user clicks on Strong constraints, Specq'ic architectural constraints, and

Designphase in the Constraints Filtering panel and selects all the actions from the Edit Actions

Filtering panel.

The constraint checker presents to the user one design violation. The violation is caused due to

the following constraint: An event that is posted by a trackingAgent must be generated by some

c,ther tracking, Agent. The diagnostic message generated by the constraint checker is:

Violation." V 1, Co,lsuaint=Triggcr-generaled,

Vars=(?M TrackingAgcnt-231)(?E linc-segmcnl-crcated-cvenI)

Ewlanofion: The event liue-segmcnt-crealcd-cvent which is used lo Irigger lrackingAgcnl-231 is nol posted by

any other IrackingAgcnt.

The designer may now examine the tracking action associated with TrackingAgent-231 to see

why line-segment-created-event is needed its a trigger. She may then decide to either delete line-

,sek,nlent-created-eventas a trigger or may introduce a new trackingAgent that posts this event.

34

Forcertainkinds of constraints,theconstraintcheckeralsogeneratesa list of suggestedremedies

andalsocomputestheeffect of executing each of those remedies (Nakano & Bhansali, 1993a)

7 Discussion of Results

We implemented the customization knowledge and constraints for customizing the generic

tracking ,'u'chitecture and have successfully used them to synthesize two different systems from

the same generic m'chitecture for tracking. The two systems were (1) ELINT- designed for

tracking aircraft based on radea" signals emitted by them(Bhansali & Nil, 1992a), and (2) HASP -

designed for tracking ships and submea'ines based on noise signals generated by them. Both these

systems had been originally designed by different groups of designers(Brown et al., 1986; Nii et

al., 1982) and both were later fielded. Our exercise using KASE essentially showed a rational

reconstruction of the designs of these two systems using the same design process on a generic

architectural design. When compared with the results of the original design (Table 2) 5 we found

that the results produced by KASE were more systematic and (we believe) more reliable although

they may not be as efficient.

ELINT KASE-ELINT HASP KASE-HASP

Blackboard
3 5 4 ItLevels

Tracking
Agents

I0

Events 9 15

13

14

26

46

Table 2. Comparison of designs produced by KASE with the original designs

For example, using KASE we obtained about twice as many m-TrackingAgent modules as in the

original design of HASP. The tracking agents differed considerably in their triggers. Comparing

these tracking agents with the original design, we found that several trigger conditions were

either missing or were unnecessary in the original design. But they had been designed in this way

in order to reduce the overhead of scheduling knowledge sources: combining the functionality of

several tracking agents into one module and triggering them based on a small set of triggers

results in faster scheduling of the tracking agents in each control cycle.

5 Wc actually iml)lerncntcd only a subset of lhc complete domain of ELINT and HASP. The mnmbcrs for ELINT

and HASP ill Figure 12 rcprcscnt the humidors _vhcn restricted to those subscls (which consists of abotnt eighly

pcl-ce_ll of lhc conlplelc sVMClll).

35

Using theoptimization commandsmentionedeea'lier(Section6.5) it is possibleto obtainthe

samedesignas in the original implementation;however,the important point is that by using

KASE onecansystematicallyconsiderthe implicationsof eachheuristicthatdesignersnormally

use in designingsystems.This reducesen'orsin the designdue to omission.Furthermore,by

recordingthe historyof customizationsteps(which is doneautomaticallyby KASE) a designer
canre-createor undothedesignprocessat a later stage.This enhancesthemaintainabilityof the

system.

We also conjecture that besidesimproving reliability and maintainability, KASE improves

productivity.We arenot yet in a positionto supportthisconjecturedirectly sincewedo nothave

datawhich can beusedto comparetheeffort expendedby the original designersin designing

their systemsand theeffort expendedin designingthemusingKASE. However,we canobtain

indirectevidenceby compmingtheeffort expendedin designingELINT andHASPusingKASE.

The design of KASE-ELINT took about 5 months (including the acquisition of domain and

customization knowledge and implementation of the optimizing commands) whereas the design

of KASE-HASP took only 2 months (of which a major part was devoted to domain knowledge

acquisition which was considerably l_uger that ELINT's and not well documented). In other

words, after the first design using a generic m'chitecture, the effort for subsequent designs is

determined mostly by the effort in domain knowledge acquisition.

KASE has been implemented using Lisp and KEE, an object-oriented knowledge

representation and programming environment. It contains about 15000 lines of Lisp code and

runs on TI Explorers. Except for some of the graphical display routines the rest of the code is

quite efficient. The output that is produced by KASE is a mix of specifications (using pre- and

post-conditions) and pseudo-code. For the two systems that have been produced so far, it is

relatively straightforward to convert this output to code. In our current work (see below) we have

added transformation rules that converts the output of KASE to produce executable code (in

Fo1_ran).

8. Current and Future Work

KASE is not yet an industrial-strength system. It has so fztr been used only by members of the

KASE project. However, different parts of the system were implemented by different people and

are constantly in use by other members <)f the project. This offers us confidence in the robusmess

and usability of the system.

Our current work seeks to measure the generality ,rod usability of KASE by using it in two

difterent domains. The first domain is concerned with a subsystem of KASE itself: the diagram

manager subsystem. This system contains the routines that implement the gr;tphical interface of

KASE. It is used to display the problem-class model and the architecture structure through

36

J

various diagrams (e.g., module decomposition, data-flow, and state-transition diagrams). These

routines were written by different members of the KASE project at different times and differ

considerably in their implementation details. However, they can all be described in a uniform

manner at some architectural level. We have created a generic architecture that represents the

design of the various subsystems and have implemented the customization knowledge that can be

used to synthesize the individual (existing, as well as new) diagramming subsystems semi-

automatically. Using the system we have been able to generate new kinds of diagrams in minutes

instead of a few days that it used to take em'lier (Bhansali, 1993).

The second domain we are investigating is concerned with the analysis of radio signals

obtained by planetary probes (e.g., Voyager and Mars Observer). We currently have an

architectural design of a system that processes these signals and performs various kinds of

filtering, compression, and error-correction on them and computes various geometrical

properties of celestial bodies. Depending upon various parameters like the path taken by a signal,

the accuracy required, or the throughput needed, different variants of the system are created by

individual users. Our goal is to represent the generic design of all these systems in KASE as a

generic architecture and investigate how KASE can help the users in improving their

productivity. Although we do not believe that KASE is ready to be made available for general

use soon, we are planning to have actual end-users use the system and obtain empirical evidence

to validate its usability.

9. Related Work

We share the general goal of supporting the synthesis of domain-specific software systems

with many other projects (e.g. KITSS(Nonnenmann & Eddy, 1992),

SINAPSE(Kant,Daube,MacGregor, & Wald, 1991), ELF(Setliff & Rutenbar, 1992),

q)NIX(Barstow, 1983)) although the various projects differ substantially in their respective

approaches. Some of these differences are due to the different domains being addressed (e.g.

telephony, CAD, scientific computing), the generality of the class of systems addressed, and the

exact form of the operational goal (code generation, specification acquisition, design, testing,

etc.) of the projects. A representative sample of some of the other domain specific software

systems can be found elsewhere(Lowry & McCartney, 1991). Here we briefly survey some of the

more closely related work and how they relate to our project.

KASE is based on a novel framework for developing software systems in which generic

architectures are the fundamental unit of reuse. In this respect our work is related to the Domain-

Specific Software Architecture l Workshop, 1990) project. However. as far :ts we know, KASE is

the first system that has _ 1) demonstrated how the concepts of software architectures, problem

classes, and software synthesis can be integrated in at unified framework. :md (2) shown the

._7
ORIGINAL PAGE IS

OF POOR QUALITY

applicability of the framework in the design of two different systems based on a common generic

,'u'chitectul'e.

If we consider the generality of domain-specific software systems, then on one end of the

spectrum lies the application generator approach. Application generators may be thought of as

high-level compilers for narrow-spectrum, application-specific languages. They are well suited

for domains where a set of requirements can be easily expressed in some simple, high-level

language. However, since the knowledge about the application domain is embedded in the

macros and interpreters of the application generator and the compilation process is opaque to an

end-user, it is difficult to adapt them for different application. In KASE, the knowledge for

customizing an architecture is represented explicitly as rules and methods which makes it much

more flexible than application generators. On the other hand, it seems to indicate that the KASE

approach is not appropriate for all problem classes. Its utility depends critically on the complexity

of acquiring and representing the relevant customization knowledge and ensuring its correctness.

At one extreme, there are classes of problems that are well understood and for which the

customization knowledge would be relatively complete and correct. In such domains an

application generator approach would be more efficient than KASE. On the other extreme ,'u'e

entirely new classes of problems for which little is known regarding the design process. In such

domains, the customization knowledge would be very sparse and KASE could not offer much

assistance beyond that offered by the cunent CASE technology. Thus, it seems that KASE would

be most useful for domain that lie between these two extremes.

The idea of constructing software systems by first capturing a model of a class of systems was

first presented in a system called Draco (Neighbors, 1984). In the Draco approach, there exists a

hierarchy of domains each corresponding to either a specific problem area (called an application

domain) or a general, application-independent domain (called a modeling domain). The

application domain of Draco corresponds to a problem-class description in KASE. The major

differences between the Draco approach and KASE arise due to the different interpretation on

what constitutes the basic unit of reuse. In Draco, the various domain models are the basic

reusable units. The design task consists of refining problem specifications written in one domain

language into another domain language repeatedly until an "executable" domain is reached. On

the other hand, in KASE our emphasis has been less on the reuse of domain models and more on

the reuse of software architectures, which is considered the basic reusable unit. The design task

consists of refining a generic software architecture into a specific one suitable for a specific

problem instance, and the major concern is on providing tools and mechanisms that allow

sf_ftware designers to do it efficiently.

Software architectures are the focus of considerable attention by several researchers at

Carnegie Mellon University (Allen & Garlan, 1992; Lane, 1990: Shaw, 1989). A major objective

38

of the work being done there is the development of an (application-independent) taxonomy of

software architectures. This includes the identification of commonly used architectural

paradigms, the relationship between various architectural paradigms and problem classes, and

analysis of trade-offs involved in choosing one pm'adigm over another (Shaw, 1989). Lane (Lane,

1990) describes a user-interface software architecture and design rules for building specific user

interface systems. The approach consists of creating a space of design alternatives and

formulating rules that indicate good and bad design choices based on problem requirements -

which is quite similar to the approach in KASE. However, it seems that there is less support for

semi-automated or automated conversion of the resultant design into code. Another line of

resem'ch is concerned with investigating how softw,'u'e architectures can be formally represented,

allowing one to explore its properties systematically which in tul-n could ultimately lead to

algorithimic techniques for choosing softwme architectures (Allen & Gm'lan, 1992).

Other closely related work to KASE m'e the LEAP project at Lockheed (Graves, 1991) and the

ROSE-2 system developed at MCC. LEAP also uses architectures as a basis for synthesizing

systems and relies on an interactive designer to synthesize a specific system. It is also capable of

learning relevant rules dynamically during design. ROSE-2 contains a library of generic design

schemas for certain application classes that can be composed and refined to produce specific

designs for problem instances.

Most of the above systems, including KASE, m'e concerned with routine or pm'ametric design

whereby an abstract, general artifact is refined into a specific one. In contrast, Feather et al.

(Feather,Fickas, & Helm, 1991) describe how non-routine or innovative designs can be produced

for certain kinds of applications that involve multiple agents interacting in order to achieve some

overall functional goal. Their approach consists of creating a set of design operators that is

sufficient to create a se,'uch space of all possible designs for an application class, followed by a

heuristic search in the design space for solving a pm-ticul_u" problem. However, other than this,

little work that has been done in exploring how innovative or novel software system designs can

be synthesized. A good topic for future research would be to investigate principled ways of

synthesizing generic software architectures from a set of basic building blocks.

There is close parallel between our approach of synthesizing software systems and

pmameterized programming (Goguen, 1989). In parameterized programming, a generic program

represents a parameterized algebraic theory which can be instantiated by using a view (theory

morphism) that binds actual and formal parameters. From this perspective, KASE can be thought

of as providing a library of highly parameterized programs (the generic system design) as well as

tools to assist a user in instantiating them based on the requirements of a particular application.

39

10. Conclusions

We have presented an approach to software reuse that is based on abstracting the design of a

class of problems as a generic architecture. Such an approach provides reuse at the level of enthe

systems in addition to reuse at the level of algorithms or subroutines. We have proposed that a

generic architecture can be usefully viewed as a cross-product of a problem-class and a set of

solution features. A library of generic architectures can thus be obtained and indexed by

considering various combinations of problem classes and solution features. We have proposed

that knowledge about an application be separated into a problem-class which contains concepts

generic to a class of problems and a problem-instance which contains concepts specific to a

particulm" application. The problem-class model can then be used to facilitate the acquisition of

the specification of a problem instance - a task that cun'ently constitutes a significant bottleneck

in creating domain-specific systems. In addition, the problem-class model can be used to

formalize the design process knowledge which, in turn, can be used to assist designers in

designing systems for many different application problems.

A distinguishing feature of KASE is its emphasis on providing tools that support the way

humans design. The goal in KASE is not towards full automation of the design process as in

traditional automatic programming research (e.g. (Smith, 1990)). Instead, KASE's goal is to

supply the appropriate knowledge to a designer in the right context so as to enable him to

increase his productivity and reduce enors in the design. This has led us to adopt an approach

that strikes a balance between entirely formal, axiomatic approaches and informal, hypertext-

based approaches. We have also striven to incorporate existing software modeling and design

practices in KASE. In particular, we have described a scenario where object-oriented modeling,

structural and functional decomposition, data-flow and state-transition diagrams can all be useful

in the design of complex systems. This makes KASE a practical tool that can be used in an

incremental manner by software designers.

The KASE approach is not suitable for all problem classes. It's utility depends to a large

extent on the feasibility of acquiring the relevant customization knowledge. We believe that

KASE is most appropriate for problem classes whose design process is neither well understood

nor poorly understood. One of the research issues that we m'e interested in is can some of the

customization knowledge be acquired and subsequently modified directly by end-users? One way

of doing this is to infer or learn appropriate customization rules by observing a user's actions.

Such a capability has been proposed in (Garg & Bhansali, 1992) and we plan to investigate how

that work can be extended to learn design rules in KASE.

4O

ORIGINAL PAGE IS

OF POOR QUALITY

4.
• 4"

Acknowledgments

This research was supported in paa't by National Aeronautics and Space Administration under

Grant NCC 2-749. The KASE system is the result of contributions from several people: H.

Penny Nii, Nelleke Aiello, Go Nakano, Raymonde Guindon, Liam Peyton, and Eduardo Pan'a.

The author would like to thank Michael Lowry and Tom Pressburger for reading an early draft of

this paper and for their many helpful comments.

References

Aho, A. V., & Ullman, J. D. (1977). Principles of Compiler Design. Addison-Wesley Publishing Company.

Allen, R., & Garlan, D. (1992). A Formal Approach 1o Software Architectures. In IFIP Worm Computer
Congress 92. Madrid, Sl)ain.

Barslow, D. (1983). A Perspective on Automatic Programming. In 8th International Joint Conference on
.4rtificial lmelligence, (Ill). 1170-1179).

Bhansali, S. (1992). Generic software architecture based redesign. In AAAI Spring Symposium on Computational
Considerations m Supporting Incremental Modification and Reuse, (PI_- 53-58). Stanford, CA:

Bhansali, S. (1993). Architecture-driven Reuse of Code in KASE. lu Fifth International Conference on Software
Engineering and Knowledge Engineering. San F,'ancisco Bay: Knowledge Systems Institute.

Bhansali, S., & Nii, H. P. (1992a). KASE'. An integrated environment for software design. In 2rid International
Cop!/'erence on Artificial Intelligence in Design, (pp. 371-389). Pittsburgh, PAt

Bhansali, S., & Nil, H. P. (1992b). Software Design by Reusing Architectures. hi 7Itl Knowledge-Based Software
Engineering Cotg'erence, (I_P. 100-109). McLean, Virginia: IEEE Computer Society Press.

Browu, H. D.,Schoen, E., & Delagi, B. A. (1996). An Experiment in Knowledge-Based Signal Understanding
Using Parallel Architectures No. STAN-CS-86-1136. Deparlment of Computer Science, Sta,fford University.

Conklin, J., & Bcgeman, M. (1989). glBIS: A Tool for all Reasons. Journal of :he American Society for
,00-21o.h!formation Science, 40, _ "

Feather, M.,Fickas, S., & Helm, B. R. (1991). Composit System Design: the Good News and tlac Bad News. In
6:h AImual Knowledge-based Software Engineering Conference, q)p. 13-27).

Garg, P., & Bhansali, S. (1992). Process Programming by Hindsighl. In 14th Imernational Conference on
Software Engineering, q)p. 2g0-293). Melbourne, Australia: I EEE Compt,ter Society'.

Goguen, J. A. (1989). Principles of Parameterized Programming. In T. J. Biggerstaff & A. Perlis (Eds.), Software
Reusability Addison Wesley.

Graves, H. (1991). Lockheed Environment for Automalic Programming. In 6th Annual Knowledge-Based
Software Engineering Coqfierence, (I_P. 7g-89). Syracuse, NY:

Gmber, T. R. (1991). The Role of Common Ontology in Achieving Sharable, Reusable Knowledge Bases. In J.
A. Allcn,R. Fikes, & E. Sandewal[(Eds.), Principles of Knowledge Representation and Reasoning: Proceedings of
the 2nd International Col!ference San Mateo, CA: Morgan Kaufnlarm.

Guindon, R. (1990). Designing the Design Process: Exploiting Opportunistic Thoughts." Human-Computer
Interaction, 5,305-34,4.

Guindon, R. (1992). Requirements and design of DesignVision, an object-oriemed graphical interface to an
mlelligent software design assistaut. In ACM Proceedings ofCHl'92, . Montcrrey, CA:

Jagamlathatl, V.,Dodhiawala, R., & Baum, L. S. (Ed.). (19_9). Blackboard Architectures and Applications.
Boston: Academic Press.

41

Kant,E.,Danbe,F.,MacGr%or,W.,& Wald,J.(1991).ScientificProgrammingbyAutomatedSynthesis.InM.
R.Lowry& R.D.McCarlneyIEds.),Automating Software Design (pp. 169-206). AAAI Press/The MIT Press.

Lane, T. G. (1990). A Design Space and Design Rules for User lnlerface Soflware Architeclures No. CMU-CS-

90-176. Carnegie Mellon Universily.

Lov,,ry, M. R., & McCartney, R. D. (Ed.). (1991). Au:oma/ing Software Design. AAAI Press/The MIT Press.

Nakano, G., & Bhansali, S. (1993a). Flexible comrol mechanism in a consistency mainlenance syslem. In IEEE

Pacific Rim Conference on Communications, Computers, and Signal Processing., . Victoria, British Columbia,
Canada.:

Nakano, G., & Bhansali, S. (1993b). A km_vlcdge-bascd approach for consistency checking meclumism m

software design. In Proceedings ofthe 6th Florida AI Research ._ymposium, (pp. 157-165). Ft. Lauderdalc, FL:

NeiGhbors, J. (1984). The DRACO approach to constructing software from reusable componenls. IEEE
Transactions on Software Engineering, l0(9), 564- 573.

Nil, H. P., & Aieilo, N. _1979). AGE (Attempt Io Generalizc_: A knowledge-based program for building

klmv,,lcdge-based programs. In 6th International Joint Cot![erence on Aruficial Intelligence, (pp. 645-655).

Nil, H. P.,Feigenbaum, E. A.,Anloq, J. J., & Rockmorc. A. J. tl982). Signal-lo-Sylnbol Transformalion:
HASP/SIAP Case Study. AI Magazine, Spring, 23-36.

Nil, P. (1989). Blackboard Systems. In A. Barr,P. Cohen, & E. Fcigenbaum (Eds.), Handbook of Art(ficial
Intelligence (pp. 1-82). New York, NY: Addison-Wesley.

Nonnenmann, U., & Eddy, J. K. 11992). KITSS - A Functional Software Testing Syslefll using a Hybrid Domain
Model. In Proceedings of the 8th Conference on Artificial Intelligence for Applications, . Monterrey, CA:

Prieto-Diaz, R., & Neighbors, J. M. (1986). Module hllereonueclion Languages. Journal of Systems and Software,
614), 307-334.

Rumbaugh, J..Blaha, M.,Premcrlani, W.,Eddy, F., & Lorcnsen, W. _1991). ObNct-oriented modeling and design.
Englewood Cliffs, New Jersey: Prentice Hall.

Setliff, D., & Rutenbar, R. (1992). Knovdcdge Represcnlalion and Reasoning in a Software Synlhesis
Archilecture. IEEE Transactions on Software Engineering, 18(6).

Shaw, M. (1989). Large scale systems require Highcr-lcvcl abslractions. In Fifth International Workshop on
Software Specifications and Design, (pp. 143-146). IEEE Computer Society.

Shaw, M. (1991). Heterogeneous design idioms for software archilcclure. In 6:h International Workshop on
Software Specification and Design, (plJ. 158-165). Como, l laly:

Smilh, D. R. (1990). KIDS: A scmi-aulorrmlic program development syslem. 1EEE Transactions on Software
Engineering, 16(9), 1024-1043.

van Melle, W. (1980) A domain indcl)endenl .'.,yslem that aids in constructing consultation programs. PhD,
Comlmler Science Del)arlment, Stanford Universily.

Walers, R. C. (1985). The Programmer's Apprcnlice: A Sessioq ,,vilh KBEmacs. IEEE Transactions on Software

Engineering, 11 (1 I), 1296-1320.

Workshop, D. (1990). Proceedings of Ihc Workshop on Domain-Specific Software Architeclures. Soflware
Engineering lnstilule.

42

